Lysophosphatidate acyltransferase activities in the microsomes from palm endosperm, maize scutellum, and rapeseed cotyledon of maturing seeds.
نویسندگان
چکیده
Lysophosphatidate (LPA) acyltransferase (EC 2.3.1.51) in the microsomes from palm endosperm (Syagrus cocoides Martius), maize scutellum (Zea mays L.), and rapeseed cotyledon (Brassica napus L.) of maturing seeds were studied for their specificities toward the acyl moiety of the substrates lysophosphatidate and acyl coenzyme A (CoA). The LPA acceptor greatly influenced the acyl CoA specificity of the enzyme and vice versa. With 1-oleoyl-lysophosphatidate (LPA-18:1), the palm enzyme was equally active on oleoyl CoA and lauroyl CoA, whereas the maize and rapeseed enzymes were more active on oleoyl CoA than on lauroyl CoA. With 1-lauroyl-lysophosphatidate (LPA-12), which generated less activity than LPA-18:1, the palm enzyme was three times more active on lauroyl CoA than on oleoyl CoA. LPA-12 was an inactive substrate for the maize and rapeseed enzymes. The selectivity of the enzymes was also studied using a mixture of LPA-18:1 and LPA-12, as well as lauroyl CoA and oleoyl CoA. Under this selectivity condition and compared to the specificity condition, the enzymes from all the three seeds exerted stronger preference for oleoyl moiety in either the LPA or acyl CoA, and again, only the palm enzyme could act on LPA-12. Similar studies, although in lesser detail, showed that the enzymes from soybean and castor bean were similar to the maize and rapeseed enzymes in having little activity on substrates containing lauroyl moiety. The results demonstrate the importance of the acyl group in the sn-1 position of LPA in determining the acyl preference in the sn-2 position in phosphatidate synthesis. The palm enzyme appears to be the only one capable of synthesizing phosphatidates containing high amounts of lauric moieties.
منابع مشابه
Diacylglycerol acyltransferase in maturing oil seeds of maize and other species.
Diacylglycerol acyltransferase (EC 2.3.1.20) activity was detected in the microsomal fractions of maturing maize scutellum, soybean cotyledon, peanut cotyledon, and castor bean endosperm. The activity detected was high enough to account for the in vivo rate of triacylglycerol synthesis. The activity of the maize enzyme was characterized using diolein micelles prepared by sonication in Tween 20 ...
متن کاملLysophosphatidate Acyltransferase in the Microsomes from Maturing Seeds of Meadowfoam (Limnanthes alba).
Lysophosphatidate (LPA) acyltransferase (EC 2.3. 1.51) in the microsomes from the maturing seeds of meadowfoam (Limnanthes alba), nasturtium (Tropaeolum majus), palm (Syagrus cocoides), castor bean (Ricinus communis), soybean (Glycine max), maize (Zea mays), and rapeseed (Brassica napus) were tested for their specificities toward 1-oleoyl-LPA or 1-erucoyl-LPA, and oleoyl coenzyme A (CoA) or eru...
متن کاملAcyl coenzyme a preference of diacylglycerol acyltransferase from the maturing seeds of cuphea, maize, rapeseed, and canola.
In their seed triacylglycerols, Cuphea carthagenensis contains 62% lauric acid; maize possesses 50% linoleic acid and 30% oleic acid; rapeseed (Brassica napus L. var Dwarf Essex) has 40% erucic acid; and Canola (Brassica napus L. var Tower) holds 60% oleic acid and 23% linoleic acid. Diacylglycerol acyltransferase (EC 2.3.1.20) in the microsomal preparations from maturing seeds of the above spe...
متن کاملA mutational approach to the study of seed development in maize.
The maize seed comprises two major compartments, the embryo and the endosperm, both originating from the double fertilization event. The embryogenetic process allows the formation of a well-differentiated embryonic axis, surrounded by a single massive cotyledon, the scutellum. The mature endosperm constitutes the bulk of the seed and comprises specific regions containing reserve proteins, compl...
متن کاملPhosphoenolpyruvate carboxylase activity and concentration in the endosperm of developing and germinating castor oil seeds.
Monospecific polyclonal antibodies against maize leaf phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) were utilized to examine the subunit composition and developmental profile of endosperm PEPC in developing and germinating castor oil seeds (Ricinus communis L. cv Baker 296). PEPC from developing endosperm consists of a single type of 100-kilodalton subunit, whereas the enzyme from 2- to 5...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 91 4 شماره
صفحات -
تاریخ انتشار 1989